Rapid review of osseointegration/ direct skeletal fixation

A report for NHS England

Search date: January 2016 Delivery date: March 2016

Terms of Use

This analysis has been produced by Bazian Ltd for NHS England. It must not be distributed to, or accessed or used by, anyone else without prior written permission from Bazian Ltd. Commercial use is not permitted without prior written agreement from Bazian. Bazian Ltd has taken care in the preparation of this literature search, but makes no warranty as to its accuracy and will not be liable to any person relying on or using it for any purpose.

Bazian Ltd 20 Cabot Square, London E14 4QW Phone: 020 7576 8156 Contact email: <u>rosie.martin@bazian.com</u>

Page 1 of 59

Contents

1. Executive summary
2. Introduction
3. Abbreviations5
4. Search
5. Existing national policies and guidance6
6. Epidemiology6
7. The intervention7
8. Findings
9. Evidence of effectiveness13
10. Safety16
11. Evidence of cost-effectiveness20
12. Trials in progress21
13. Equity issues
14. Implications for commissioning23
15. Discussion and conclusions24
16. Bibliography27
Appendix A: Scope
Appendix B: Search strategy32
Appendix C: Excluded studies at full text
Appendix D: Data extraction table

1. Executive summary

This report is an independent evaluation of the evidence base for the effectiveness and safety of lower limb osseointegrated prosthesis/direct skeletal fixation for the Armed Forces Direct Commissioning team within NHS England. Conventional socket prostheses rely on suction or strapping of the prosthesis to the stump which can cause a variety of problems and is often not possible at all. The term osseointegrated prosthesis includes all techniques that aim to avoid these problems by directly fixing the prosthesis to the bone. It involves insertion of a titanium rod into the residual bone of an amputee. An abutment is then attached to the rod and this permanently protrudes through the skin. The lower leg prosthesis can then be attached to this abutment. Variations of this procedure have been performed since 1990 mainly in national centres in Sweden, Germany and Australia but it has only been available as part of trials in the UK thus far. In this document, osseointegrated prosthesis is the generic term for these procedures, with the specific techniques referred to where applicable.

A search of biomedical and specialist databases for any human study published since 2000 on adult osseointegrated prosthesis found 23 observational studies of a total of 303 people who have undergone the procedure on 1 or both lower limbs. No randomised controlled trials were identified, so there is no high quality evidence on which to base recommendations. The main limitation of these case series is that with no matched control group we cannot be sure what the outcomes would have been if people had been given different types of osseointegrated prostheses or if they had not undergone the procedure.

Surgical techniques, devices and rehabilitation regimes have changed over the years but there are 3 main osseointegrated prosthesis techniques currently available called OPRA, Endo-Exo Femur Prosthesis and OPL for which the following results have been published:

- OPRA: 100 cases from a single centre in Sweden and 11 cases from a single centre in the UK. Good efficacy and safety profile with longest reported implant survival of 10 years in 3 cases. The main differences to the other procedures is the second operation to attach the abutment occurring after 6 months and then a slow rehabilitation schedule of 6 to 12 months with no weight bearing for the first 2 weeks after the second surgery.
- Endo-Exo Femur Prosthesis: (now termed IPL), 69 cases from a German centre and 22 cases from a centre in The Netherlands. Similar safety profile to OPRA with longest implant survival of 12 years, but limited data reported on efficacy. Second surgery performed after 6 weeks and then a faster rehabilitation regime with full weight bearing over a matter of days after the second surgery.
- OPL: (now termed OGAP-OPL), 101 cases from a single centre in Australia. Two conference abstracts report good efficacy and safety but with limited details and no long-term outcomes. The second operation is usually performed after 6 weeks but in some cases there is just a single operation fitting the rod and abutment at the same time. Rehabilitation with weight bearing is immediate and rapid.

Overall across these case series, quality of life assessed using standard questionnaires after 1 or 2 years showed substantial improvement though it stayed the same for a small proportion and worsened for a few cases. Mobility increased with the majority of people using the osseointegrated prosthesis on a daily basis. For each technique, between 5 and 7 people have had bilateral implants but further details are lacking.

Superficial infections were common and usually adequately treated with oral or intravenous antibiotics, though a large number of early cases required revision surgery. Newer surgical techniques and changes in the titanium rod appeared to reduce the number of infections. Deep infections were much less common, affecting between 1% and 8% of cases, with most requiring implant removal. The overall removal rate was 8% to 20%, but reimplantation was successful in half of these cases. No study reported on the outcomes for people for whom osseointegration was unsuccessful so it is not known if their situation was worse than before or not. There was no available data on deaths associated with osseointegration.

Implant structure failure was rare and bone fracture rate around the implant also appears to be very low at between 0% and 7% over up to 9 years. Pain remained severe 2 years after the first operation in 2% of cases and was intermittent during rehabilitation in 10% of cases, according to 1 case series. Implant stability was good up to 5 years with no bone resorption though there were some bone structural changes such as cortical thinning.

There was little available evidence on which to base the cost-effectiveness of the procedure. Only 1 small cost-effectiveness study was identified which looked at the costs of a specialist prosthetic workshop in Sweden. There are lifelong cost and support issues to consider, such as the number of revisions that may be required, whether new models of implants, abutments and prostheses remain compatible and the outcomes for people in whom the procedure is unsuccessful.

Most centres considered people to be eligible for the procedure if they had significant difficulties with the conventional socket prosthesis and were motivated and considered able to cope with the demands of the rehabilitation regime and lifelong care of the skin surrounding the protruding abutment (stoma). Common exclusion criteria across the centres were:

- Diabetes or vascular disease
- Chemotherapy or other immunosuppression
- Skeletal immaturity
- Poor bone quality (due to radiotherapy, osteoporosis, metabolic bone disease or renal insufficiency)
- Severe cognitive or psychiatric disorders

There are 4 registered trials ongoing or awaiting publication, including the ITAP trial of 20 adults from the UK which finished in December 2015. Outcomes of the OPRA Swedish case series of 51 people were last reported on in 2014, but data collection is planned to continue until 2027. The other 2 trials are about the types of bacteria on the stoma and use of the drug Denusomab to improve bone mineral density.

In summary, low quality evidence indicates that osseointegrated prosthesis improves quality of life for the majority of recipients and appears to be a safe procedure with only small numbers affected by the most important potential complication of deep infection. With a lack of high quality evidence and only limited long-term outcomes, osseointegration could be suitable for the NHS England Commissioning through Evaluation scheme (CtE) but there is insufficient evidence to recommend one technique over another. This is due in part to a lack of efficacy results for Endo-Exo Femur Prosthesis, little safety or efficacy data for OPL and none for ITAP. There are also no studies directly comparing the techniques. Commissioning of this procedure should include clinical governance, audit and standard assessments of long-term outcomes such as the Q-TFA and include all participants with no drop-outs or selective reporting so that this can better inform future decision-making.

2. Introduction

The Armed Forces Direct Commissioning team within NHS England requires an independent evaluation of the evidence base for osseointegration/direct skeletal fixation. More specifically, NHS England requires:

- An independent evaluation of the evidence for and against this procedure
- A recommendation as to which if any commissioning route to follow
- An estimate of the likely costs of a commissioning decision
- A recommendation of the types of patients who are most likely to benefit

This procedure involves the insertion of a titanium rod into the remaining bone of the amputated limb or digit. The rod penetrates through the skin and attaches to a prosthesis. The procedure has been used for people who have difficulties using the conventional socket approach whereby the limb is attached to the prosthesis through suction or strapping. Obtaining and maintaining a good fit between the socket and stump is challenging and a poor fit can lead to pressure sores, skin irritation, ulcers, fistula formation and pain¹. Directly fixing the prosthesis to the bone through osseointegration aims to be a more comfortable and secure way of attaching the prosthesis and has been reported to improve control, stability and increase walking ability. Other activities that are possible with an osseointegrated prosthesis include cycling and swimming (if exposure to infection can be avoided or minimised) but running is not recommended due to the extreme forces involved.

This report focuses on the efficacy and safety of the procedure specifically for transfemoral (above the knee) osseointegration due to increasing demand, particularly among the armed forces community. In this document, osseointegrated prosthesis is the generic term for these procedures, with the specific techniques referred to where applicable.

3. Abbreviations

IPG	Interventional Procedure Guidance
ILP	Integral-Leg-Prosthesis
ITAP	Intraosseous transcutaneous amputation prosthesis
NICE	National Institute for Health and Care Excellence
NR	Not reported
OGAP-OPL	Osseointegration Group of Australia Osseointegration Prosthetic Limb
OPL	Osseointegration Prosthetic Limb
OPRA	Osseointegrated Prostheses for the Rehabilitation of Amputees
Q-TFA	Questionnaire for Persons with a Transfemoral Amputation
SF-36	Short Form Health Survey 36
TUG	Timed up and go test
6 MWT	6 minute walk test

4. Search

A systematic literature search was performed of biomedical databases, speciality databases, grey literature, citation searching and scanning reference lists. The searches included any study type with no restrictions or methodological filters as we aimed to identify all human studies including on-going trials and conference abstracts from 2000 to January 2016.

After deduplication of search results, 749 records remained. After an initial sift at title and abstract level, 86 records remained for the second sift, 57 were rejected and 29 studies were analysed at full text. Of these, 24 are included in this review. Further details of the scope are provided in Appendix A, the search strategy in Appendix B and excluded studies at full text in Table 5, Appendix C.

5. Existing national policies and guidance

The National Institute for Health and Care Excellence (NICE) provided Interventional Procedure Guidance (IPG) on 'Direct skeletal fixation of limb or digit prostheses using intraosseous transcutaneous implants' in 2008². They recommended that the procedure is only performed if there are special arrangements for clinical governance, consent and audit or research. This was due to a lack of evidence at the time on the safety and effectiveness of the procedure and in particular the long-term outcomes.

6. Epidemiology

There are around 45,000 amputee and limb deficient people in England³. Each year about 4,000 major lower limb amputations, 200 upper limb amputations and 150 congenital upper and lower limb amputations are referred to about 30 specialist centres³. The vast majority of lower limb amputations are conducted in the elderly population due to vascular disease and diabetes which is estimated to be around 90% of cases according to an MoD report from 2008⁴. In the UK from 2011 to 2012 there were 171 transfemoral amputations due to trauma (13 bilateral), 78 due to tumour and 174 from infection, the 3 main reasons for amputation in most recipients of osseointegration thus far⁵. Unsuccessful fitting of a transfemoral socket prosthesis is estimated to occur in 30% and 60% of cases⁴, so between 127 and 254 people each year may be suitable candidates for an osseointegrated prosthesis, though this will also depend on other inclusion and exclusion criteria.

With regards to the armed forces, a recent study found that as a result of the Afghanistan conflict between 2003 and 2014 there were 416 amputations in 265 individuals, with above the knee amputations affecting 153 people⁶. They calculated that the cost of lifetime care for veterans with amputations from the Afghanistan conflict alone is £288 million. While these costs do not solely include prostheses, it does indicate the magnitude of the issue.

7. The intervention

Osseointegration originated in dental implants but has also been used for people with amputations since the early 1990s. The basic concept is that a titanium rod is inserted into the bone of the residual limb, such as the femur, and the skin is closed. Bone cells then gradually attach to the titanium, holding it in place. After either 6 weeks or 6 months depending on the centre's protocol, a second operation is performed to attach the rod to a metal abutment (connector) which protrudes through the skin. This abutment can be attached to the external prosthetic limb and there is a safety release feature in case of falls.

The opening of the skin and soft tissues around the abutment is called the stoma and depending on the technique used, the skin either seals onto the abutment or slides along it during walking. It is common for there to be secretions from the stoma and this may continue beyond the initial healing period. Care needs to be taken of the stoma for life to keep it clean so as to avoid infection. This includes prompt eradication of ingrowing hairs such as through laser hair removal.

The 2-stage operation was conceived so that the osseointegration of the bone and titanium rod would take place in a "closed" environment, reducing the risk of deep infection in the bone. However, the Osseointegration Group of Australia Osseointegration Prosthetic Limb (OGAP-OPL) centre and Intraosseous transcutaneous amputation prosthesis (ITAP) in the UK now perform the procedures in 1 operation in appropriate candidates.

Over the years, other changes in technique have included debulking the soft tissue, refining any residual burn or scar tissue and removing subcutaneous fat from around the abutment.

Rehabilitation protocols have also changed and still differ across the centres that offer osseointegration. The Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) system that originated in Sweden favours a slow rehabilitation protocol after the second operation over 24 weeks or 48 weeks with no weight bearing for the first 2 to 4 weeks and utilising a short prosthesis before graduating to full height. Whereas the Integral-Leg-Prosthesis (ILP) system from Germany (previously called Endo-Exo Femur Prosthesis) and the OGAP-OPL system prefer immediate partial weight bearing with full weight bearing without crutches after 4 to 6 weeks. Further details of the various centres offering osseointegration are provided in Table 1 including the number of cases that have been reported in the literature for these centres.

Table 1: Osseointegration techniques currently available

Procedure	Company	Cases	Intervention details	Countries
		reported		offering
		and dates		technique
Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA)	Integrum, MoIndal, Sweden ⁷	100 cases 1990-2008	Procedure ⁸ : 2 nd operation after 6 months, also involves splitting muscles at the end of the implant and suturing them to the bone, leaving a portion of 5mm bare bone covered by skin that has had	Sweden, Australia, Belgium, Denmark, France, The
			the subcutaneous fat removed. Rehabilitation ⁹ : Normal speed 6 months (or half speed 12 months).	Netherlands, Portugal, Spain, Australia, USA and Chile
			Immobilisation for 1-2 weeks. Training with short prosthesis starting with 20kg at 4-6 weeks. Training with full prosthesis 11-13 weeks. Discuss when can walk without a walking aid at 24 weeks.	
Endo-Exo Femur Prosthesis, now termed Integral- Leg-Prosthesis (ILP)	Sana Clinics Lübeck, Germany ¹⁰	69 cases 1999-2013	Procedure: 2 nd operation after 6 weeks. Rehabilitation: Partial weight-bearing 5-10kg with crutches and vertical posture immediately after second surgery.	Germany, The Netherlands and Australia
			Full weight-bearing without crutches after 4 to 6 weeks.	
Intraosseous transcutaneous amputation prosthesis (ITAP)	Stanmore Implants Ltd, UK ¹¹	None yet reported	Procedure: 1 stage operation. Rehabilitation: No details provided.	Only available a part of a pre-CE mark clinical study in the UK.
Osseointegration Prosthetic Limb (OPL) now termed Osseointegration Group of Australia Osseointegration Prosthetic Limb	Osseointegration Group of Australia ¹²	101 cases 2011-2015	Procedure:1 single operation or 2nd operation after 6 to 8weeks. Redundant skin and any bone spurs areremoved, muscle groups are rearranged andsoft tissue fat is removed.Rehabilitation:	Australia
(OGAP-OPL) OPRA	A Step Ahead Prosthetics, USA ¹³	None yet reported	Partial weight-bearing and fitting of prosthesis days after surgery. No details provided.	USA, Israel

8. Findings

A search for all human studies for lower limb osseointegration identified 1 systematic review¹ and 23 primary studies, several of which were reported as conference abstracts only. The primary studies included 9 prospective case series, 9 retrospective case series, 4 case series with nominal control groups such as socket users or people without limb loss and 1 retrospective cost analysis. There were no randomised controlled trials. Thus all studies were observational in nature, with many being retrospective which limits the strength of the body of evidence. The main limitation of these case series is that with no matched control group we cannot be sure what the outcomes would have been if people had been given different types of osseointegration prostheses or if they had not undergone the procedure.

The studies reported on 303 cases from single centres in 5 countries, shown in Table 2. Several of these studies reported on interim results for sub-sets of the same cases at different time points or according to specific outcomes, so the main and most recent results are reported here to avoid repetition. Comparisons and reporting is further complicated by evolving techniques, equipment and rehabilitation regimes over the years. Some studies had short follow-up periods of 1 to 2 years whilst others had longer follow-up but with selective reporting and they often do not report how participants were recruited so there is an element of selection bias.

No evidence was found on employment and return to work outcomes - other than 3 out of 11 cases from the UK who were in full-time employment following the procedure compared to 1 beforehand.

Only 1 cost analysis study was identified which provided limited information regarding socket prosthetic costs compared to osseointegration prosthetic costs at a single specialist prosthesis workshop in Sweden.

Demographics

There was no notable difference in the demographics of recipients of each of the different types of osseointegrated prostheses. The average age at time of amputation was around 33 in each centre, with a wide age range of 1 to 76. The average age at implantation was also similar in each centre at around 45 years, with a range of 17 to 76 years. There were more men than women with OPRA and Endo-Exo Femur Prosthesis but sex was not reported for OPL. Further details are provided in Table 2.

The majority of subjects had amputations due to trauma or tumour, with a handful due to infection or congenital conditions. All had significant difficulties with the conventional socket prosthesis. The studies did not split the effectiveness or safety outcomes according to the reason for amputation. Between 1 and 7 cases per centre received bilateral implants except in the UK. All 6 people with OPRA from the Swedish centre were using them at follow up but no further details were provided in any study about efficacy or safety of bilateral implants.

Most studies excluded participants for the following reasons:

- Diabetes or vascular disease
- Chemotherapy or other immunosuppression
- Skeletal immaturity
- Poor bone quality (due to radiotherapy, osteoporosis, metabolic bone disease or renal insufficiency)
- Severe cognitive or psychiatric disorders

Page 9 of 59

Other reasons for exclusion at some centres included:

- Body mass greater than 100Kg¹⁴
- Age less than 20 or more than 70 years^{8, 9, 14}
- Skin disease affecting amputation⁸
- Femur less than 8cm¹⁵

Technique and rehabilitation modifications

The 2 largest case series with the most comprehensive details split their data according to changes in technique or rehabilitation. Out of the 100 cases of OPRA from Sweden during the period 1990 to 2008, 51 of them were reported in a separate study as the centre had instituted a standard rehabilitation protocol for them in 1999, of either 12 months or 18 months depending on individual circumstances. The German centre split their results into 2 groups – 30 cases of the original Endo-Exo Femur Prosthesis designs from 1999 to 2008 and 30 cases with a modified, smaller design with a different implant coating and an altered surgical technique from 2009 to 2013. All available evidence from these studies will be reported on in the effectiveness and safety sections where relevant but further details of all studies can be found in Table 6, Appendix D.

Table 2: Studies identified in search

Country	Study	Total	Intervention	Demographics	Studies
	periods	number of cases			
Sweden	1990-2008	100 6 bilateral implants	OPRA	 61 males, 39 females Average age at amputation: 32±13.9 years (range 10 to 63 years) Average age at implantation: NR Years since amputation when implanted 11.5±11 years (range 0 to 44 years) Reason for amputation: Trauma (N=67) Tumour (N=21) Infection (N=7) Vascular including embolus (N=3) Diabetes (N=2) 	Branemark 2014 ¹⁶ Hagberg 2014 ¹⁷ , 2009 ⁹ , 2008 ¹⁸ , 2005 ¹⁹ Haggstrom 2013 ²⁰ , 2013 ²¹ Nebergall 2012 ²² Tranberg 2011 ²³ Frossard 2010 ²⁴ Tillander 2010 ²⁵
UK - Roehampton	1997- 2003	11 No bilateral implants	OPRA	on at least 1 day a week Sex: NR Average age at amputation: NR Average age at implantation: NR Unable to use socket technique	Sullivan 2003 ¹⁴ Hagberg 2005 ¹⁹
Germany	1999- 2013	69 4 bilateral implants	Endo-Exo Femur Prosthesis, now called ILP	56 males, 13 females Average age at amputation: 34.5±14.2 years (range 14 to 76 years) Average age at implantation: 45.4±12.3 years (range 17 to 76 years) Reason for amputation: • Trauma from RTAs (N=51) • Tumour (N=7) • Infected total knee arthroscopy (N=3)	Juhnke 2015 ²⁶ Aschoff 2014 ²⁷ , 2014 ²⁸ , 2012 ²⁹ , 2011 ³⁰ , 2010 ³¹ , 2009 ³²

Page 11 of 59

				• 4th degree burn (N=1)	
				• Other (N=7)	
				Socket information: NR	
The	2009-	22	Endo-Exo	18 males, 4 females	Van de Meent 2013 ¹⁵
Netherlands	2011		Femur		AI Muderis 2015 ³³
		1 bilateral	Prosthesis	Average age at implantation 46.5	
		implants		(range 23 to 67 years)	
				Average time since amputation	
				16.4 years (range 2 to 45 years)	
				Reason for amputation:	
				• Trauma N=20	
				• Tumour N=2	
				Significant socket related problems	
				affecting quality of life	
Australia	2011-	101	OPL	Sex: NR	Khemka 2015 ³⁴ , 2015 ³⁵
	2015		(Osseointegrat		Al Muderis 2015 ³³
		7 bilateral	ed Prosthetic	Average age at amputation:	
		implants	Limb), now called OGAP-	33 (range 3 to 76 years)	
			OPL	Average age at implantation 44.3	
				(range 17 to 76 years)	
				Reason for amputation:	
				 Trauma (N=77) 	
				 Infection (N=12) 	
				• Tumour (N=10)	
				30% wheelchair-bound	

9. Evidence of effectiveness

Efficacy outcomes have broadly been split into quality of life assessments, mobility, implant longevity, hip range of motion and vibrotactile sensation though there is some overlap across these sections. Standard outcome measures were not used consistently across the identified studies which makes synthesis of the results challenging.

Overall there was a significant improvement in quality of life for the majority of people across the studies when assessed using standard questionnaires after 1 or 2 years, though it stayed the same for a small proportion and worsened for a few cases. Mobility increased according to several case series with a substantial number of people using the osseointegrated prosthesis on a daily basis. The longest reported time that implants were still intact was 10 years for OPRA and 12 years for Endo-Exo Femur Prostheses. A small case series suggested that OPRA improved gait when compared to that of a group of socket users and that it was normalising towards that of people without limb loss but this study was of low quality and subject to selection bias.

No evidence was found of the effectiveness of osseointegration implants for:

- Confidence
- Return to work/vocational outcomes
- Bone mineral density

Quality of Life

Mean improvements in prosthetic use, mobility and reduced problems were found according to the Questionnaire for Persons with a Transfemoral Amputation (Q-TFA) in the first 1 or 2 years after implantation for 51 cases of OPRA from Sweden and 16 people with OPL from Australia. Results of the Short Form Health Survey 36 (SF-36) also showed mean improvements in physical function and physical role functioning for the 51 OPRA cases with no change in other domains. The overall situation improved for the majority of these cases plus 22 people with Endo-Exo Femur Prosthesis from The Netherlands and 9 cases from the UK. Of note, the situation was unchanged for 24% of the OPRA case series and got worse for 7%. A small study found that OPRA caused little sitting discomfort compared to that experienced by a group of socket prosthesis users but it is unclear how the subjects were recruited which makes it subject to selection bias.

Q-TFA:

The Q-TFA is a self-reported questionnaire which is used to assess function and quality of life. Each domain is scored from 0 to 100 with higher scores indicating better quality of life except for the problem score. Three studies reported Q-TFA outcomes as follows:

- Mean prosthetic use score (0 = no use, 100 = more than 15 hours per day for 7 days):
 - Increased from 52 to 70, p<0.001 in 51 people with OPRA over 2 years follow-up⁸.
 - Increased from 63 to 91 for 16 people between 6.5 months and 24 months after OPL
 Stage 1 surgery in Australia (56% reported an improvement)³⁴.
- Mean prosthetic mobility score:
 - Increased from 52 to 70, p<0.001 in 51 people with OPRA over 2 years follow-up⁸.
 - Increased from 64 to 82 for 16 people between 6.5 months and 24 months after OPL Stage 1 surgery in Australia (75% reported an improvement)³⁴.

Page 13 of 59

- Mean problem score (0 = no problems):
 - Reduced from 44 to 17, p<0.001 in 51 people with OPRA over 2 years follow-up⁸.
 - Reduced from 40 to 8 for 16 people between 6.5 months and 24 months after OPL Stage 1 surgery in Australia (94% reported an improvement)³⁴.
- Mean global score:
 - Increased from 38 to 77, p<0.001 in 51 people with OPRA over 2 years follow-up⁸.
 - Increased from 47 to 79 for 16 people between 6.5 months and 24 months after OPL
 Stage 1 surgery in Australia (69% reported an improvement)³⁴.
 - Increased from 39 to 63 for 22 Endo-Exo Femur Prosthesis recipients in the Netherlands after 1 year follow-up¹⁵.

SF-36

The SF-36 is a general health related questionnaire which is also scored on a scale of 0 to 100 with higher scores indicating a better quality of life. This assessment was only reported in the OPRA 2 year follow-up of 51 people, with the following results⁸:

- Physical function improved from 35 to 58, p<0.001.
- Physical functioning role improved from 41 to 63, p<0.001.
- Other parameters did not change significantly such as vitality, bodily pain, general health perceptions, emotional and social role functioning.

Sitting discomfort

One non-randomised case series compared reports of sitting discomfort from 20 people with OPRA for at least 2 years and able to walk 100m or more, and 43 socket prosthesis users in Sweden¹⁹. The results are as follows, but should be interpreted with caution as there was no attempt to match the control group with the OPRA group and so the study has major limitations due to selection bias:

• 5% of the osseointegrated group reported sitting discomfort compared to 44% of the socket user group.

Overall situation

The overall situation improved for most people given osseointegration prostheses according to 2 case series as follows:

- According to 1 question on the Q-TFA, the overall situation improved for 31/45 (69%) people, stayed the same for 11/45 (24%) and got worse for 3 (7%) people in the 2 years following OPRA⁸.
- The UK study of 11 cases of OPRA did not use any standard quality of life assessments over the 5.5 years of follow-up¹⁴. However, they reported that 9 cases had improved quality of life such as better proprioception, ability to walk further and do more, no longer feeling disabled and ability to participate with full daily living and activities such as cycling. Negative aspects included longer rehabilitation than expected and a high number of visits for rehabilitation.

Mobility

The majority of people used their osseointegrated prosthesis on a daily basis according to 4 case series over a follow-up period of 1 to 17.5 years. It is not clear if a single implant lasted 17.5 years or if they had been replaced. Gait analysis was assessed in 12 people with an osseointegrated implant and showed marginally better cadence and duration of gait cycle compared to socket prosthesis users from the literature, though methodological issues limit the reliability of these results. Other tests

Page 14 of 59

performed on 22 people with an Endo-Exo Femur Prosthesis gave encouraging results in 6 minute walk test, timed up and go test and oxygen consumption.

Prosthetic use:

Three case series reported directly on prosthetic use as follows:

- 40/45 had daily prosthetic use (1 no use due to pain, 4 less than daily use) compared with 29/51 before implantation in the 2 year follow-up of the OPRA case series from Sweden⁸. In the larger case series of 100 people with OPRA performed in the Swedish centre between 1990 and 2008, 68 people with 74 prostheses were still using them by 2008⁹. There are no details as to whether any had lasted the full 17.5 years.
- Mean use increased from 56 to 101 hours/week for 22 people with Endo-Exo Femur Prosthesis in the Netherlands after 1 year follow-up¹⁵.
- Daily use was reported in 9/11 cases from the UK during a maximum follow-up of 5.5 years¹⁴.

Gait analysis

The gait of 12 participants from Sweden and Australia with unilateral osseointegrated implant for at least 1 year and able to walk unaided 200m or more was compared to data sets from the literature of 142 people with transfemoral amputation fitted with a socket, and 258 participants without limb loss²⁴. The results should be interpreted with caution due to selection bias and non-standardised assessments for each group which may not have been conducted under the same conditions, but were reported as follows:

- Cadence was 46 strides/minute, which was 2% faster than for those using a socket prosthesis and 11% slower than people without limb loss.
- Gait cycle was 1.29 seconds, 3% shorter than for those using a socket prosthesis and 9% longer than people without limb loss.
- Swing phase of the gait cycle was slightly longer than for people with a socket prosthesis or those without limb loss.

Other tests:

The case series of 22 people with Endo-Exo Femur Prosthesis in the Netherlands showed improved performance on the following 3 tests after 1 year¹⁵:

- 6 minute walk test (6 MWT) increased on average from 321m to 423m.
- Timed up and go test (TUG) improved from 15.1 seconds to 8.1 seconds.
- Oxygen consumption reduced from 1330mL/min to 1093mL/min.

Implant longevity

Due to the short length of follow up, changes in technique, improved design and small numbers of cases, it is not clear how long osseointegrated prostheses are likely to last. The longest time an Exo-Endo Femur Prosthesis is reported to have lasted is 12 years³⁶. For OPRA, there have been 3 reported cases lasting 10 years²².

Hip range of motion

Hip range of motion was assessed in 2 small case series with non-matched "control" groups, both limited by selection bias. They found that OPRA improved hip range of motion and pelvic tilt:

• Hip range of motion of 20 people from the UK and Sweden with OPRA for at least 2 years and able to walk for at least 100m was compared to 43 socket prosthesis users in Sweden¹⁹:

- There was no hip range of motion restriction for the OPRA group (none had less than 90° hip flexion) compared to it being reduced in all directions with a socket prosthesis (37% had less than 90° hip flexion).
- Hip extension and anterior pelvic tilt of 19 people was recorded before and 2 years after OPRA and compared to 57 people without limb loss in Sweden²³:
 - Hip extension increased by 7.3° from -2.6° (range -13.4° to 10.7°) to -9.9° (range -29.4° to 5°), p=0.007, reportedly improving towards the result for people without limb loss, though data was not provided.
 - Anterior pelvic tilt reduced by 4° from 21.7° (range 11.9° to 34.8°) to 17.7° (range 5.5° to 25.7°), p=0.016, also reportedly improving towards the result for people without limb loss, but data was not provided.

Vibrotactile sensation

Vibrotactile sensation was assessed in 1 small case series of 17 people before and 2 years after OPRA in Sweden and compared to 17 people with socket prostheses²⁰.

- Detection threshold improved by 10 Decibels (Db) for high frequencies of 125Hz and 250Hz (from 110Db to 100Db for 125Hz and from 122Db to 111Db for 250Hz).
- There was no change for lower frequencies of 8Hz, 16Hz, 32Hz and 64Hz.
- These results were better than for the people who used socket prostheses.

Other outcomes

- The case series of 101 people with lower leg OPL performed in Australia reported significant improvement for Q-TFA, SF-36, K-scores (functional ability), TUG and 6 MWT. Energy expenditure increased 4-fold. No further details were provided in the conference abstract, but this case series included people with below knee OPL³⁵.
- No efficacy outcomes were reported for the case series of Endo-Exo Femur Prostheses performed in Germany³⁶.

10. Safety

Safety outcomes were not consistently reported across the studies and were often only recorded in the first 2 years, which hampers the ability to draw firm conclusions or make any comparisons between the techniques. Though each of the following safety issues is reported in percentages, they are based on small numbers and often over short follow-up periods.

Superficial infections were common and usually adequately treated with oral or intravenous antibiotics, though a large number of Endo-Exo Femur Prosthesis cases required revision surgery. Newer techniques and changes in the size, shape and coating of the titanium rod appeared to reduce the number of infections. Deep infections were much less common, affecting between 1% and 8% of cases, with most requiring implant removal. Other causes of implant removal were failure to osseointegrate and aseptic loosening. The overall removal rate was 8% to 20%, but reimplantation was successful in half of these cases. No study reported on the outcomes of people for whom osseointegration was unsuccessful so it is not known if their situation was worse than before or not.

Implant structure failure was only reported in 1 case across all studies and abutment fracture or bending in 9 cases. Bone fracture rate around the implant also appears to be very low at between 0% and 7% over up to 9 years. Pain remained severe 2 years after the first operation in 2% of cases and

Page 16 of 59

was intermittent during rehabilitation in 10% of cases, but this was based on 1 case series. Implant stability was good up to 5 years and there was no bone resorption though there were some bone structural changes such as cortical thinning. There was no available data on deaths associated with osseointegration.

Bazian.

Superficial infection

Across 5 case series of implants performed in Europe and Australia, superficial soft tissue infections were commonly reported, occurring in between 32% to 96% of cases. Most were treated successfully with oral antibiotics though many required hospital admission and surgery. Three of these studies were conducted over a 2 year period so do not provide data on more long-term infection rates. The lengthier case series from the German centre over 9 years only reported infection rates requiring surgical intervention so it is not clear how many cases of less severity occurred which may have responded to antibiotics. In this case series the rates of infection requiring surgery were higher in the early years at 77%, but dramatically reduced to zero following changes in technique and implant device. While this is encouraging, the shorter follow-up period for these later cases may have affected the results.

The results of each national centre are as follows:

- Revision surgery for infection occurred in 77% of cases (23/30) fitted with early versions of Endo-Exo Femur Prosthesis in Germany between 1999 and 2008, but in none of the cases (0/39) fitted using the newer design and technique between 2009 and 2013³⁶. This study did not report on the number of soft tissue infections treated with oral or intravenous antibiotics, nor did any previous interim publications^{26-32, 36}.
- There was a 55% infection rate with OPRA implants over a 2 year follow-up period in Sweden up to 2007¹⁶. This occurred 41 times in 28 out of 51 cases. All instances were treated with antibiotics, 4 of them in hospital.
- There was a 32% infection rate) over a 2 year follow-up period in operations performed in Australia (12/22) after 2011 when OPL was introduced. Seven people were treated with oral antibiotics and 5 required surgical intervention³³. The same surgeon performed OPL on 101 lower limb amputees according to a conference abstract, but infection rates were not reported³⁵.
- Soft tissue infection occurred in 96% of Endo-Exo Femur Prosthesis cases performed in The Netherlands (23/24) in the first 2 years after implantation from 2009 to 2011. Fifteen were treated with antibiotics and 8 required surgical intervention³³.
- The UK case series of 11 people with OPRA from 1997 to 2003 did not provide details on superficial infection rate¹⁴.

Deep infection

Osteomyelitis occurred in 1% to 8% of cases. A higher percentage of 18% was found in the UK study but this was due to the small study size of just 11 people. The deep infections mainly required surgical interventions and most caused implant failure.

The results of the national centre are as follows:

• The Endo-Exo Femur Prosthesis cases in the German centre between 1999 and 2008 had a 3% rate of intramedullary infection (1/30), with no cases from the newer design and technique during 2009 and 2013 (0/39), giving an overall rate of 1%³⁶. The infection led to removal of the implant. Skeletal immaturity was believed to have contributed to poor osseointegration, leading to the infection. A further report on this case series including an additional 5 people

with Endo-Exo Femur Prosthesis prostheses by the same author reported an incidence of intramedullary infection of 5% $(4/74)^{26}$.

- A deep infection rate of 8% occurred in OPRA cases from the Swedish centre (4/51) over a 2 year follow-up period⁸. One led to loosening and removal, 1 was treated with oral antibiotics and 2 had positive cultures at surgery with no signs of infection and they were treated with oral antibiotics for 6 months.
- Osteomyelitis causing implant failure occurred in 4% of OPL cases (1/22) performed in Australia over a 2 year follow-up period³³.
- Osteitis (inflammation of the bone) requiring surgical intervention occurred in 4% of Endo-Exo Femur Prosthesis cases (1/24) in The Netherlands centre over a 2 year follow-up period from 2009 to 2011³³.
- Deep infections affected 18% of cases of OPRA from the UK centre (2/11) during the first year and required implant removal¹⁴.

Removal

Overall, 8% to 20% of implants were removed. Causes included failure to osseointegrate, infection and aseptic loosening. Reimplantation was successful in half of these cases. No information was provided on outcomes such as mobility or complications in people who had had an unsuccessful implant.

The results for each national centre are as follows:

- 6% of Endo-Exo Femur Prosthesis implants were removed at the German centre. All occurred in the group of people from 1999 to 2008 (4/30) due to a failure to osseointegrate, though half were reimplanted. No implants were removed in the group from 2009 to 2013 (0/39)³⁶.
- 20% of OPRA implants were removed from the large Swedish case series (20/100) between 1990 and 2008 but no details were provided on the cause⁹. Of these, 13 cases were reimplanted, 9 of which were successful. When looking at the more recent sub-set of this case series between 1999 and 2007, 8% of implants (4/51) were removed⁸. Three of these were due to aseptic loosening causing pain on weight-bearing and 1 was due to infection.
- 18% of OPRA implants (2/11) were removed within the first year due to infection in the UK case series from 1997 to 2003¹⁴.
- The number of implants that were removed was not reported for the case series of OPL from Australia³³⁻³⁵ or Endo-Exo Femur Prosthesis from The Netherlands^{15, 33}.

Implant or abutment structure failure

Failure of the structure of the implant was rare, occurring in just 1 case from the German case series. Fracture or bending of the abutment was slightly more frequent, especially due to falls, occurring in 9 people with OPRA from Sweden and the UK.

The results for each national centre are as follows:

- In the German Endo-Exo Femur Prosthesis case series, there was 1% implant structure failure. The case occurred at 7 years from the early group (1/30) implanted between 1999 and 2008. There were none in the more recent group from 2009 to 2013 (0/39)³⁶.
- 9 fractures or bending of the abutment or screw occurred (4/51) 6 in the same person in OPRA cases from Sweden between 1999 and 2007⁸.
- 45% of OPRA abutments were replaced due to mechanical deformation or fracture (5/11) in the UK following falls¹⁴. None of the implants were damaged.
- Implant or abutment structure failure was not reported for the case series of OPL from Australia³³⁻³⁵ or Endo-Exo Femur Prosthesis from The Netherlands^{15, 33}.

Page 18 of 59

Fracture

Overall there was a lack of data on the frequency of fractures around the implant. The Endo-Exo Femur Prosthesis case series from Germany had an overall fracture rate of 7%. There were fewer cases with the newer technique, but again the shorter length of follow up could have affected the results, especially when looking at such small sample sizes. No fractures were reported around the OPRA implant in the case series from the Swedish centre over the period from 1999 to 2007, though 3 people had hip fractures.

The results of each national centre are as follows:

- A 10% fracture rate was experienced in the group of people in Germany from 1999 to 2008 (3/30) over the first 6 months following osseointegration with Endo-Exo Femur Prosthesis and 5% in the group (2/39) from 2009 to 2013 which occurred after 31 and 34 months³⁶. This gave an overall fracture rate of 7%.
- In the Swedish case series 6% (3/51) had fractures of the hip of the affected limb over the period from 1999 to 2007⁸. There was also 1 below the elbow fracture and 1 vertebral compression. The larger case series covering an additional 49 cases from 1990 to 1999 did not report on the incidence of fractures⁹.
- Rate of fracture was not reported for the case series of OPL from Australia³³⁻³⁵, Endo-Exo Femur Prosthesis from The Netherlands^{15, 33} or OPRA from the UK¹⁴.

Pain

Only the case series from Sweden reported on pain as an outcome.

- Almost constant pain was reported by 2% of people with OPRA (1/51) up to 2 years after the implantation⁸. Intermittent pain during the rehabilitation phase occurred in 10% of people (5/51). In the larger case series 2% had severe phantom limb pain (2/100) and 1% had contralateral limb pain (1/100)⁹.
- Pain outcomes were not reported for the case series of Endo-Exo Femur Prosthesis from Germany^{26-32, 36} or The Netherlands^{15, 33}, OPL from Australia³³⁻³⁵, or OPRA from the UK¹⁴.

Long-term implant stability and bone structure

Long-term fixation and stability was assessed in the OPRA Swedish case series of 51 people, with around 50 cases assessed in the first 2 years but just 15 cases by year 5 which limits confidence in the results²².

- At the 5 year assessment there appeared to have been very little movement of the implant within the bone. The implant had moved downward on average 0.02mm and rotated on average 0.42 degrees.
- Cancellization of the cortex (increased porosity) occurred in at least 1 out of 12 zones in over half of cases by the first year after implant. The number of cases affected increased by year 2 but decreased by year 5.
- Cortical thinning also occurred in some cases which was obvious from the first year of follow up.
- There was very rarely any bone resorption.

Death

There was no data available on deaths related to osseointegration. Any deaths in study participants were reported as follows:

- Overall there were 4 deaths in the OPRA Swedish case series of 100 people⁹. There were 3 deaths before the second operation was performed 1 of these was described as unrelated to the implant procedure when reported in the subset study of 51 people^{8, 9}. The causes of the other 3 deaths were not reported.
- Deaths were not reported for the case series from Germany^{26-32, 36}, Australia³³⁻³⁵, The Netherlands^{15, 33} or the UK¹⁴.

11. Evidence of cost-effectiveness

One cost-effectiveness study was identified but it was of low methodological quality²¹. Costs of socket prostheses and the external components of osseointegrated prostheses were calculated retrospectively from a prosthetic workshop in Sweden between 1993 and 2008. The costs included salaries, new prostheses, services, repairs, adjustments and maintenance but did not include costs associated with initial surgery, clinic appointments or other health related costs.

The total cost per year was higher for socket prostheses users at $\in 3,672\pm2,259$ compared to $\in 3,149\pm1,682$ for those with osseointegrated prostheses, based on 2009 prices. People with socket prostheses also had more than double the number of visits to the workshop per year, with a mean number of 7.2±4.2 visits compared to 3.1±1.5 visits for people with osseointegrated prostheses. Of note, this was a specialised prosthetic clinic for people who had extra difficulties with their socket prosthesis so this may not be an entirely representative sample of socket prosthesis users in general.

The average cost to manufacture a new prosthesis in 2009 was more than double for the external components of the osseointegration prostheses at $\notin 9,370\pm6,441$ compared to the components of a socket prosthesis at $\notin 4,890\pm1,758$.

No evidence was found on value for money of osseointegration implants such as:

- Return on prosthetic investment
- Costs of stump management
- Reduced obesity, vascular disease and diabetes risk
- Speed of return to work/normal activities of daily living

12. Trials in progress

There are 4 registered trials that are ongoing or awaiting publication, 2 are open label/efficacy studies, 1 study will look at the bacterial composition around the stoma and 1 double blind randomised controlled trial will assess whether use of the drug Denusomab helps to improve bone mineral density.

Stanmore study

Direct Skeletal Fixation of Prosthetic Limbs Following Trans-Femoral Amputation - Study of an Intraosseous Transcutaneous Amputation Prosthesis (ITAPTM) <u>NCT02491424</u>

This UK study has finished and the results are awaited - no preliminary results are available.

Device:	Direct skeletal fixation of ITAP to lower limb amputees.
Locations:	United Kingdom, Royal Orthopaedic, Birmingham and
	Royal National Orthopaedic Hospital, Stanmore
Sponsor:	Stanmore Implants Ltd.
Enrolment:	20 adults with traumatic transfemoral amputation
Study design:	Open label safety/efficacy study
Study Start Date:	January 2007
Estimated Primary Completion Date:	December 2015
Estimated Study Completion Date:	February 2016

OPRA study

Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) NCT01725711

This study has been running since 1999 when the standardised rehabilitation protocol was implemented. Interim results of this study have been reported throughout this report, and they intend to continue to report effectiveness and safety outcomes until 2027.

Device:	OPRA Implant System
Location:	Sweden, Sahlgrenska University Hospital, Gothenburg
Sponsor:	Integrum
Enrolment:	51 adults with transfemoral amputation not due to
	vascular disease
Study design:	Open label safety/efficacy study
Study Start Date:	May 1999
Estimated Study Completion Date:	May 2027

Microbiome trial

Microbiome and Innate Immunity with Percutaneous Osseointegrated Prostheses <u>NCT02564432</u>

This study is not yet open for participant recruitment. The aim is to record changes/evolution in bacterial ecology around the exit site (stoma) at intervals up to 1 year and changes in the individual microbiome of each patient will be compared against him/herself and against the other 10 patients.

Device:	A novel percutaneous osseointegrated prosthetic (POP)
Location:	Salt Lake City, Utah

Page 21 of 59

Sponsor:	VA Office of Research and Development
Estimated Enrolment:	10 US veteran or active military personnel with
	transfemoral amputation
Study Start Date:	October 2015
Estimated Study Completion Date:	September 2018
Estimated Primary Completion Date:	September 2017 (Final data collection date for primary
	outcome measure)

Denusomab trial

Osseointegrated transdermal femoral amputation prostheses - Denusomab Trial <u>EUCTR2012-003574-66-DK</u>

Device:	Use of Denusomab to improve bone mineral density
Location:	Denmark
Sponsors:	Aarhus Universitet, Karen Elise Jensens Fond
Enrolment:	28 adults with transfemoral osseointegrated prostheses
	(14 aged 65 or over)
Study design:	Randomised placebo-controlled double blind trial
Study Start Date:	2013
Estimated Study Completion Date:	2016

13. Equity issues

The potential equity issues include age, body build, bilateral or unilateral amputations and mental health conditions.

Age

Older age was an exclusion criterion in 3 national centres, where the cut-off was 70 years. However a 76 year old was given an Endo-Exo Femur Prosthesis in the German centre which was performed the same year as the amputation. No further details are available about the success of the implant for this individual. The case series of OPL from the Australian centre also included at least 1 person aged 76 at the time of amputation and implantation, though again no further details on outcomes has been published. Restricting the procedure solely based on an upper age limit may be discriminatory and it could be more appropriate to look at overall fitness and likely ability to cope with the rehabilitation.

The younger age cut-off in each centre was either 20 years or described as "skeletal immaturity". A case of Endo-Exo Femur Prosthesis from the German centre that failed to osseointegrate was deemed to be due to skeletal immaturity. Further details of this case are not available, but the youngest person to have had the procedure was 17 years old. Though this is only 1 case, it seems reasonable to continue the exclusion criterion of skeletal immaturity.

Body build

The size of the implant and thus the requirement for a certain width and length of residual femur may limit its use in people of smaller build and this may affect more women than men. Weight over 100Kg was an exclusion criteria in the UK case series¹⁴ because of concerns about weight-bearing on

Page 22 of 59

the implant and abutment. Overweight or obesity were not listed as exclusion criteria in any of the other case series. There are no available details about weight and outcomes.

Bilateral or unilateral amputations

Several case series included a small number of bilateral amputees, some of whom had 1 or both limbs fitted with an osseointegrated implant. The studies do not report any difference in outcomes for these people compared to those with unilateral limb loss, so there is no evidence to suggest that this should be a reason not to perform the procedure.

Mental health conditions

Any psychiatric conditions and low intelligence were listed as exclusion criteria in most case series due to concerns over the ability to cope with the rehabilitation regime and lifelong stoma care. However, it would seem more reasonable to look at this on a case by case basis according to level of severity, social support and the potential improvements in quality of life that osseointegration may bring.

As inability to use a socket prostheses can contribute to both obesity and certain mental health disorders such as depression, these may be conditions that need more careful consideration before exclusion.

14. Implications for commissioning

The NICE 2008² recommendation for osseointegration to be performed only if special arrangements are made was based on the lack of available evidence of effectiveness, safety and in particular long-term outcomes. At that time, there were only 2 non-randomised comparative studies and 3 case series which included osseointegration for 39 lower limb amputees. Though there is now published evidence for 303 people who have undergone transfemoral osseointegration, there are still no randomised controlled trials and there remains limited evidence of long-term outcomes.

It is difficult to draw firm conclusions regarding which type of osseointegration model or technique is to be recommended over any other. Most case series provided results of 1 lead surgeon and multidisciplinary team from a single centre so it is not possible to separate the effect of the expertise, technique or implant type. Results specifically for the UK are currently confined to those from Queen Mary's Hospital in Roehampton, and this was for just 11 people from 1997 to 2003. Techniques and rehabilitation schedules have changed since this time. It is likely that results of 20 cases of ITAP from the Stanmore centre in the UK will be published later this year. The expertise and volume of cases performed each year should be taken into account when considering where to commission this service.

Shorter time between operations and rehabilitation schedules such as from teams offering ILP in Germany and OGAP-OPL in Australia are an attractive option for both commissioning purposes and the individual. However neither centre have published details of effectiveness and so there is a lack of evidence on whether a shorter gap between surgeries and faster rehabilitation affects the osseointegration process, success of the procedure and long-term outcomes. The OPRA team from Sweden that favour a 12 to 18 month rehabilitation schedule timed from the first surgery remarked that in their experience "a rapid increase in implant loading can lead to implant loosening" and that "pain during rehabilitation can indicate overload and should be avoided". It was for these reasons

Page 23 of 59

that they implemented their standard rehabilitation protocols in 1999. It is not clear why this is not also a concern where rapid rehabilitation is recommended with full weight-bearing in a matter of weeks.

There are lifelong cost and support issues to consider, such as the number of revisions that may be required, whether new models of implants, abutments and prostheses remain compatible and the outcomes for people in whom the procedure is unsuccessful.

15. Discussion and conclusions

The body of evidence regarding the effectiveness and safety of osseointegration remains small. There are just observational case series of 303 people who have undergone the procedure on 1 or both lower limbs. These studies variably compared quality of life before and after osseointegration and reported on complications and safety aspects of the procedure. Four low quality case series with comparisons to either socket users or people without limb loss were also available though they provide limited evidence due to methodological problems such as selection bias and unmatched groups. No randomised controlled trials were identified and there were no comparative studies of people with osseointegration implants compared to people who are unable to use socket prostheses. The main limitation of these case series is that with no matched control group we cannot be sure what the outcomes would have been if people had been given different types of osseointegration prostheses or if they had not undergone the procedure.

The studies reported on 111 cases of OPRA from single centres in Sweden (100 cases) and the UK (11 centres), and 102 cases of Endo-Exo Femur Prosthesis performed in Germany (69 cases) and The Netherlands (22 cases). Two conference abstracts reported on 101 cases of OPL performed in Australia. Follow-up times and outcome measures varied across these studies, limiting the ability to synthesise the results.

Effectiveness

Quality of life assessed using standard questionnaires after 1 or 2 years showed improvement for each technique (with varying levels of detail) though it stayed the same for a small proportion and worsened for a few cases. Mobility increased with a substantial number of people using the osseointegrated prosthesis on a daily basis. Due to the short length of follow up, changes in technique, improved design and small numbers of cases, it is not clear how long osseointegrated prostheses are likely to last. The longest time an Exo-Endo Femur Prosthesis is reported to have lasted is 12 years. For OPRA, there have been 3 cases lasting 10 years. There is very little data on the newer OPL technique from Australia and none on the latest OGAP-OPL model.

Safety

The procedure seems to be safe, with deep infections only affecting between 1% and 8% of cases and not all requiring implant removal. Newer techniques and changes in the titanium rod appeared to reduce the number of infections, though it is likely that superficial infections will continue to be a common occurrence. In these case series they occurred in between 32% and 96% of cases but were usually adequately treated with oral or intravenous antibiotics, though a large number of early cases required revision surgery. The overall removal rate was 8% to 20%, but reimplantation was successful in half of these cases. Pain remained severe 2 years after the first operation in 2% of cases and was

intermittent during rehabilitation in 10% of cases, but this was based on 1 case series. There was no available data on deaths associated with osseointegration.

Implant structure appears to be robust with only 1 reported structure failure. Bending or fracture of the abutment was more likely but this still occurred at a low frequency of just 9 cases. Bone fracture rate around the implant also appears to be very low at between 0% and 7% over up to 9 years. Implant stability was good up to 5 years but there were some bone structural changes such as cortical thinning, but no bone resorption.

From the available evidence, no procedure outshines the others in terms of safety.

Costs

There was little available evidence on which to base the cost-effectiveness of the procedure. Only 1 small cost-effectiveness study was identified which looked at the costs of a specialist prosthetic workshop in Sweden.

When considering costs associated with commissioning the procedure, the length between surgeries and rehabilitation costs are an obvious area of difference between OPRA and the other two techniques, Endo-Exo Femur Prosthesis (now called ILP) and OPL (now called OGAP-OPL). OPRA has the second operation after 6 months and a slow rehabilitation regime over the following 6 to 12 months while the others have a much shorter regime. However, there is much more detailed effectiveness data for OPRA than for the other techniques and this should be taken into account. Regardless of the type of procedure, there are lifelong cost and support issues to consider, such as the number of revisions that may be required, whether new models of implants, abutments and prostheses remain compatible and costs for people in whom the procedure is unsuccessful.

Candidates

As there is no data on outcomes if osseointegration is unsuccessful, it seems sensible for osseointegration to only be offered to people who have significant difficulties with the conventional socket technique, as applied by the majority of centres offering osseointegration. Most recipients of osseointegrated implants had amputations due to trauma or tumour, with a few cases due to infection but outcomes were not compared between these causes. All of the case series excluded people with amputation due to diabetes except for 2 cases of OPRA in the early years of the procedure because of concerns about wound healing and complications.

Gaps in the evidence

The studies did not split the effectiveness or safety outcomes according to the reason for amputation, or different types of trauma - for example blast injury versus surgical amputation. There was also no comparison of results according to variables such as age, weight or time since amputation.

No study reported on the outcomes for people for whom osseointegration was unsuccessful so it is not known if their situation was worse than before or not. This may be why most centres only perform the operation if there are major problems with the conventional socket prostheses.

No studies were found which compared the BMD of people with osseointegration implants and socket prosthesis users or wheelchair users. In theory, increased mobility should mean that more weightbearing activity is possible which could improve bone mineral density and contribute to prevention of osteoporosis.

Future

When the ITAPTM study from the UK is published, hopefully later this year, there will be long-term follow details of up to 8 years for 20 patients. The ongoing OPRA study of 51 amputees from Sweden which started in 1999 will also provide longer follow-up in the future and is planned to continue until 2027. It will also be interesting to see the results of the randomised double-blind placebo controlled trial of whether Denusomab improves bone mineral density for people with osseointegrated prostheses which finishes this year.

Conclusion

In summary, low quality evidence indicates that osseointegration implants improves quality of life for the majority of recipients and appears to be a safe procedure with only small numbers affected by the most important potential complication of deep infection. With a lack of high quality evidence, osseointegration could be suitable for the NHS England Commissioning through Evaluation scheme (CtE)^{3, 37}, but there is insufficient evidence to recommend one technique over another. This is due in part to a lack of efficacy results for Endo-Exo Femur Prosthesis, little safety or efficacy data for OPL and none for ITAP. There are also no studies directly comparing the techniques. Any commissioning should include clinical governance, audit and standard assessments of long-term outcomes such as the Q-TFA and include all participants with no drop-outs or selective reporting so that this can better inform future decision-making.

16. Bibliography

- Van Eck CF, McGough RL. Clinical outcome of osseointegrated prostheses for lower extremity amputations: A systematic review of the literature. Current Orthopaedic Practice. 2015;26(4):349-57.
- 2. NICE. Direct skeletal fixation of limb or digit prostheses using intraosseous transcutaneous implants. National Institute for Health and Care Excellence (NICE) Interventional procedure guidance [IPG270]. 2008.
- NHS England. Commissioning, Specialist Services, National Programmes of Care and Clinical Reference Groups: D01. Complex Disability Equipment [Internet].[cited 5th March 2016]. Available from: <u>https://www.england.nhs.uk/commissioning/spec-services/npc-crg/groupd/d01/</u>.
- 4. Stewart C. Ministry of Defence. Synopsis of Causation: Lower Limb Amputation. 2008.
- 5. United National Institute for Prosthetics & Orthotics Development (UNIPOD). Limbless Statistics Annual Report 2011-2012. University of Salford Manchester, 2013.
- 6. Edwards D, Phillip R, Bosanquet N, et al. What is the Magnitude and Long-term Economic Cost of Care of the British Military Afghanistan Amputee Cohort? Clin Orthop Relat Res. 2015;473(9):2848-55.
- Integrum. Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) [Internet]. MoIndal: Integrum AB[cited 25th February 2016]. Available from: <u>http://integrum.se/</u>.
- 8. Brånemark R, Berlin Ö, Hagberg K, et al. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients. Bone and Joint Journal. 2014;96 B(1):106-13.
- 9. Hagberg K, Brånemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses Rehabilitation perspective. Journal of Rehabilitation Research and Development. 2009;46(3):331-44.
- 10. Lubeck SC. Integral Leg Prosthesis (ILP) [Internet]. Lubeck: Sana Clinics[cited 25th February 2016]. Available from: <u>http://www.osseointegration-germany.de/index.php/en/</u>.
- 11. Implants S. Intraosseous Transcutaneous Amputation Prosthesis (ITAP) [Internet]. Elstree: Stanmore Implants[cited 25th February 2016]. Available from: <u>http://www.stanmoreimplants.com/itap-implant.php</u>.
- 12. Australia OGo. Osseointegration Group of Australia Osseointegration Prosthetic Limb (OGAP-OPL) [Internet]. Sydney: Osseointegration Group of Australia; [cited 5 March 2016]. Available from: <u>http://www.osseointegrationaustralia.com.au/the-ogap-opl-prosthesis</u>.
- 13. Prosthetics ASA. Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) [Internet]. New York: A Step Ahead Prosthetics; [cited 5th March 2016]. Available from: <u>http://www.weareastepahead.com/see-what-we-do/osseointegration/</u>.
- 14. Sullivan J, Uden M, Robinson KP, et al. Rehabilitation of the trans-femoral amputee with an osseointegrated prosthesis: The United Kingdom experience. Prosthetics and Orthotics International. 2003;27(2):114-20.
- 15. Van De Meent H, Hopman MT, Frölke JP. Walking ability and quality of life in subjects with transfemoral amputation: A comparison of osseointegration with socket prostheses. Archives of Physical Medicine and Rehabilitation. 2013;94(11):2174-8.
- 16. Brånemark R, Berlin Ö, Hagberg K, et al. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients. Bone and Joint Journal. 2014;96 B(4):562.
- 17. Hagberg K, Hansson E, Brånemark R. Outcome of percutaneous osseointegrated prostheses for patients with unilateral transfemoral amputation at two-year follow-up. Archives of Physical Medicine and Rehabilitation. 2014;95(11):2120-7.
- 18. Hagberg K, Brånemark R, Gunterberg B, et al. Osseointegrated trans-femoral amputation prostheses: Prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up. Prosthetics and Orthotics International. 2008;32(1):29-41.
- Hagberg K, Häggström E, Uden M, et al. Socket versus bone-anchored trans-femoral prostheses: Hip range of motion and sitting comfort. Prosthetics and Orthotics International. 2005;29(2):153-63.

- 20. Häggström E, Hagberg K, Rydevik B, et al. Vibrotactile evaluation: Osseointegrated versus socket-suspended transfemoral prostheses. Journal of Rehabilitation Research and Development. 2013;50(10):1423-34.
- 21. Haggstrom EE, Hansson E, Hagberg K. Comparison of prosthetic costs and service between osseointegrated and conventional suspended transfemoral prostheses. Prosthetics and Orthotics International. 2013;37(2):152-60.
- 22. Nebergall A, Bragdon C, Antonellis A, et al. Stable fixation of an osseointegated implant system for above-the-knee amputees: Titel RSA and radiographic evaluation of migration and bone remodeling in 55 cases. Acta Orthopaedica. 2012;83(2):121-8.
- 23. Tranberg R, Zügner R, Kärrholm J. Improvements in hip- and pelvic motion for patients with osseointegrated trans-femoral prostheses. Gait and Posture. 2011;33(2):165-8.
- 24. Frossard L, Hagberg K, Häggström E, et al. Functional outcome of transfemoral amputees fitted with an osseointegrated fixation: Temporal gait characteristics. Journal of Prosthetics and Orthotics. 2010;22(1):11-20.
- 25. Tillander J, Hagberg K, Hagberg L, et al. Osseointegrated titanium implants for limb prostheses attachments: Infectious complications. Clinical Orthopaedics and Related Research. 2010;468(10):2781-8.
- 26. Juhnke DL, Aschoff HH. Endo-exo prostheses following limb-amputation. Orthopade. 2015;44(6):419-25.
- 27. Aschoff HH. About osseointegrated, percutaneous implants for rehabilitation following limbamputation. Langenbeck's Archives of Surgery. 2014;399(7):903.
- 28. Aschoff HH, Juhnke DL. The Endo-Exo-prosthesis-an alternative solution to the socket prosthesis for rehabilitation of amputees. Archives of Orthopaedic and Trauma Surgery. 2014;134(3):438.
- Aschoff HH, Juhnke DL. [Evaluation of 10 years experience with endo-exo femur prostheses background, data and results]. Zeitschrift für Orthopädie und Unfallchirurgie. 2012;150(6):607-14.
- Aschoff HH, Clausen A, Tsoumpris K, et al. Implantation of the endo-exo femur prosthesis to improve the mobility of amputees. Operative Orthopadie und Traumatologie. 2011;23(5):462-72.
- Aschoff HH, Kennon RE, Keggi JM, et al. Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: an endo-exo device. J Bone Joint Surg Am. 2010;92 Suppl 2:180-6.
- 32. Aschoff HH, Clausen A, Hoffmeister T. The endo-exo femur prosthesis--a new concept of bone-guided, prosthetic rehabilitation following above-knee amputation. Zeitschrift für Orthopädie und Unfallchirurgie. 2009;147(5):610-5.
- 33. Al Muderis M, Khemka A, Lord S, et al. Safety of osseointegrated prosthesis for trans-femoral amputees. Prosthetics and Orthotics International. 2015;39:489-90.
- 34. Khemka A, Frossard L, Lord S, et al. Health-related quality of life of individuals with transfemoral amputation fitted with the Transcutaneous Bone Anchoring Prosthesis following the OGAAP. Prosthetics and Orthotics International. 2015;39:465.
- 35. Khemka A, Lord S, Bosley B, et al. Osseointegrated prosthetic limb for amputees-over hundred cases. Prosthetics and Orthotics International. 2015;39:497.
- 36. Juhnke DL, Beck JP, Jeyapalina S, et al. Fifteen years of experience with Integral-Leg-Prosthesis: Cohort study of artificial limb attachment system. Journal of Rehabilitation Research and Development. 2015;52(4):407-20.
- 37. NHS England. NHS Commissioning, Specialised services, National Programmes of Care and Clinical Reference Groups: Commissioning through Evaluation [Internet].[cited 10th March 2016]. Available from: <u>https://www.england.nhs.uk/commissioning/spec-services/npc-crg/comm-eval/</u>.
- Isaacson BM, Stinstra JG, MacLeod RS, et al. Bioelectric analyses of an osseointegrated intelligent implant design system for amputees. Journal of Visualized Experiments. 2009(29).
- 39. Isaacson BM, Stinstra JG, MacLeod RS, et al. Developing a quantitative measurement system for assessing heterotopic ossification and monitoring the bioelectric metrics from electrically induced osseointegration in the residual limb of service members. Annals of biomedical engineering. 2010;38(9):2968-78.

- 40. Lundberg M, Hagberg K, Bullington J. My prosthesis as a part of me: A qualitative analysis of living with an osseointegrated prosthetic limb. Prosthetics and Orthotics International. 2011;35(2):207-14.
- 41. Pantall A, Ewins D. Muscle activity during stance phase of walking: Comparison of males with transfemoral amputation with osseointegrated fixations to nondisabled male volunteers. Journal of Rehabilitation Research and Development. 2013;50(4):499-514.
- 42. Webster JB, Chou T, Kenly M, et al. Perceptions and acceptance of osseointegration among individuals with lower limb amputations: A prospective survey study. Journal of Prosthetics and Orthotics. 2009;21(4):215-22.

Appendix A: Scope

Table 3: Scope

Research questions:	Inclusions	Exclusions
P - Patients / Population Which patients or populations of patients are we interested in? How can they be best described? Are there subgroups that need to be considered?	Adult amputees. We will consider and describe the different populations included in the studies identified to determine which categories of patients are most likely to benefit, and in what circumstances, and in which patients it should be used. Examples of different population subgroups are those with traumatic amputations, poor vascular perfusion of the stump, bilateral amputations, different sites of lower leg amputation (through and above knee), those with poor fit of prosthesis using socket technologies	Children Congenital conditions
I - Intervention Which intervention, treatment or approach should be used?	 technologies. Osseointegration/ direct skeletal fixation. There are multiple techniques and the exact technique utilised in each study will be noted, including: Associated Brånemark Osseointegration Centers Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) Sana Clinics Lübeck Endo-Exo Prosthesis Stanmore Implants Ltd Intraosseous transcutaneous amputation prosthesis (ITAP) Osseointegration International Osseointegration Prosthetic Limb (OPL) DJO Global Proprietary osseointegration technology 	None
C - Comparator What is/are the main alternative/s to compare with the intervention being considered?	Active stump management involving multiple socket fitting and revision surgery Being a full time wheelchair user Standard method of attachment of prosthesis using sockets	None
O - Outcomes What is really important for the patient? Which outcomes should be considered? Examples include intermediate or short-term outcomes; mortality; morbidity and quality of life; treatment complications; adverse effects; rates of relapse;	 <u>Critical to decision-making:</u> Quality of life: Mobility Confidence Pain Return to work/vocational outcomes Complications of osseointegration procedures and their time course Bone density Value for money Return on prosthetic investment 	None

Page 30 of 59

	 Important to decision-making: Where best performed: internationally, UK, England, regionally and number of teams Skills needed Convenience, cost, team experience 	
Study designs	Any human study	Case series of less than five people Animal studies
Other parameters	Published since 2000 English language studies only OECD countries including Germany	Non-OECD countries

Appendix B: Search strategy

The search aimed to identify both academic, peer-reviewed articles, and grey literature documents from 2000 to January 2016 for literature specifically relating to osseointegrated prostheses. The searches did not include any study type restrictions or methodological filters as we aimed to identify all human studies including on-going trials and conference abstracts. No language restrictions were used. A 3-pronged approach was used for the search:

- 1. Biomedical databases
- 2. Speciality databases and grey literature
- 3. Supplemental search techniques

Biomedical databases searching

- MEDLINE (via Embase.com)
- Embase (via Embase.com)
- Cochrane Library
 - Central Register of Controlled Trials (CCTR)
 - Cochrane Database of Systematic Reviews (CDSR)
- Scopus (Elsevier)
- NICE Evidence
- TRIP database

Speciality databases and grey literature searching

- Google
- Google Scholar
- Clinicaltrials.gov
- Grey Literature Report
- Defense Technical Information Center (DTIC), US Department of Defense database
- The NARIC Knowledgebase (US National Rehabilitation Information Center)
- CIRRIE Database of International Rehabilitation Research (Index to published research conducted outside of the United States) and REHABDATA (for US research)
- PEDro (Physiotherapy Evidence Database)

Supplemental searching

In addition to database and grey literature searches, we have also used supplemental searching, including the use of 'pearl growing' methods such as author searching and reference harvesting. Highly relevant documents identified from databases and the grey literature will be used as 'pearls' for these supplemental methods.

Search/sifting results

Table 4: Sift results

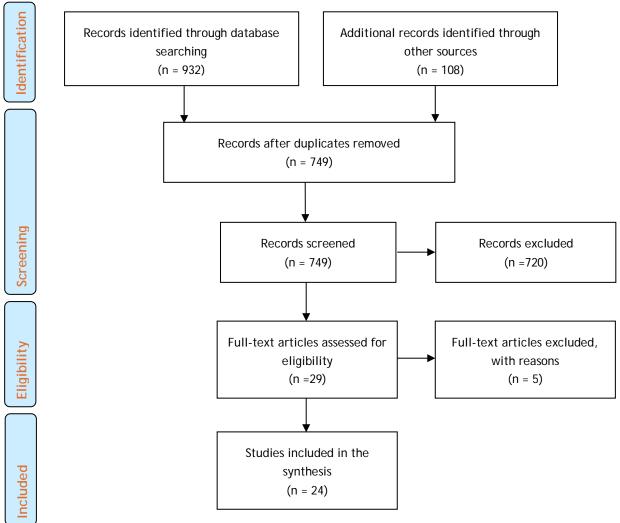
Databases and sites searched	Dates searched	Number of hits
MEDLINE & Embase	2000-11/01/2016	459
Cochrane Database Syst Rev	2000-11/01/2016	0
Cochrane CENTRAL	2000-11/01/2016	2
Scopus	2000-2016	471
TRIP database	12/01/2016	0
Speciality & grey literature databases	20/01/2016	108
Clinicaltrials.gov	20/01/2016	2
Non-database searching/Supplemental searches	19/01/2016	8
Total number of hits	1040	
Total number after de-duplication	749	
Total number after first appraisal	86	
Total number appraised at full text	29	
Total number included in review	24	

Record of searches strategies

MEDLINE & Embase (Embase.com)

- #1 'bone regeneration'/de
- #2 osseointegration:ab,ti OR osseointegrat*:ab,ti OR osseoanchor*:ab,ti OR intraosse*:ab,ti
- #3 (osseo NEXT/2 integrat*):ab,ti
- #4 opra:ab,ti OR opl:ab,ti OR itap:ab,ti
- #5 implant:ab,ti AND (anchor*:ab,ti OR fixat*:ab,ti OR transcut*:ab,ti OR transderm*:ab,ti)
- #6 #1 OR #2 OR #3 OR #4 OR #5
- #7 'amputation'/exp
- #8 amput*:ab,ti
- #9 'limb prosthesis'/exp
- #10 limb:ab,ti AND (artificial:ab,ti OR prosthe*:ab,ti)
- #11 #7 OR #8 OR #9 OR #10
- #12 #6 AND #11
- #13 #6 AND #11 AND [2000-2016]/py

Cochrane Library - Cochrane Database of Systematic reviews, CENTRAL, HTA, NHS EED, DARE


- #1 MeSH descriptor: [Osseointegration] this term only
- #2 "Bone Regeneration":ti,ab,kw
- #3 (osseointegrat* or osseoanchor* or intraosse*):ti,ab,kw
- #4 (osseo next/2 integrat*):ti,ab
- #5 (opra or opl or itap):ti,ab
- #6 (implant and (anchor* or fixat* or transcut* or transderm*)):ti,ab
- #7 #1 or #2 or #3 or #4 or #5 or #6

- #8 MeSH descriptor: [Amputation] explode all trees
- #9 MeSH descriptor: [Amputation, Traumatic] this term only
- #10 MeSH descriptor: [Amputation Stumps] this term only
- #11 MeSH descriptor: [Amputees] this term only
- #12 amput*:ti,ab
- #13 MeSH descriptor: [Artificial Limbs] this term only
- #14 (limb and (artificial or prosthe*)):ti,ab
- #15 #8 or #9 or #10 or #11 or #12 or 13 or 14
- #14 #7 and #15

Scopus

((TITLE-ABS-KEY (osseointegrat* OR osseoanchor* OR "bone regeneration")) OR (TITLE-ABS-KEY (osseo integrat*)) OR (TITLE-ABS-KEY (intraosse* OR opra OR opl OR itap)) OR (TITLE-ABS-KEY (implant AND (anchor* OR fixat* OR transcut* OR transderm*)))) AND ((TITLE-ABS-KEY (amput* OR (limb AND (artificial OR prosthe)))) OR (INDEXTERMS (amputation))) AND (LIMIT-TO (PUBYEAR 2000 - 2015)

PRISMA 2009 Flow Diagram

Page 34 of 59

Appendix C: Excluded studies at full text

Table 5: Studies excluded at full text

Author	Title	Reason for exclusion	
Isaacson 2009 ³⁸	Bioelectric analyses of an	Proof of concept	
	osseointegrated intelligent implant	modelling study	
	design system for amputees		
Isaacson 2010 ³⁹	Developing a quantitative measurement	Modelling	
	system for assessing heterotopic	laboratory study	
	ossification and monitoring the		
	bioelectric metrics from electrically		
	induced osseointegration in the residual		
	limb of service members		
Lundberg 2011 ⁴⁰	My prosthesis as a part of me: A	Qualitative and	
	qualitative analysis of living with an	purposive	
	osseointegrated prosthetic limb		
Pantall 2013 ⁴¹	Muscle activity during stance phase of	Able-bodied	
	walking: Comparison of males with	control	
	transfemoral amputation with		
	osseointegrated fixations to		
	nondisabled male volunteers		
Webster 2009 ⁴²	Perceptions and acceptance of	Survey of people	
	osseointegration among individuals	without	
	with lower limb amputations: A	osseointegration	
	prospective survey study	implant	

Bazian...

Appendix D: Data extraction table

Table 6: Data extraction table

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
Juhnke 2015 ³⁶	Germany	69 transfemoral amputees	Endo-Exo Femur Prosthesis, later	Group 1 up to 14	"The early high rate	Single surgeon and
		(56 males)	termed Integral-Leg-Prosthesis	years follow-up,	of reoperation,	centre, unclear how great
Retrospective case			(ILP)	Group 2 up to 5 years	which was seen with	an impact this has on
series		4 had bilateral implants			the initial design	results.
			Two-stage procedure - first	Efficacy	iterations, is not a	
1999 to 2013			debulking soft tissue, addressing	Implants have so far	valid criterion for	Interim data was
		Average age at amputation:	any burns and then implanting	lasted up to 12 years.	abandoning skeletal	published as:
Single centre		34.5±14.2 years (range 14 to	device into bone and closing skin		prosthetic docking."	Aschoff 2012 ²⁹ ,
Single surgeon		76 years)	for internal healing and	Safety		Aschoff 2011 ³⁰ (of the
			osseointegration. After 6 weeks,	There were 104		first 39 patients, 37 said
		Average age at implantation:	opening skin and attaching	revisions or unplanned		they would do it again),
		45.4±12.3 years (range 17 to	bridging connector. 2 nd generation	interventions.		Aschoff 2010 ³¹ ,
		76 years)	cephalosporin given for each			Aschoff 2009 ³² (reports
			surgery.	Revision surgery for		that 16 to 18cm of femur
		Participants were selected to		infection:		is needed. Reports on 30
		minimise infection risk, so	Group 1: N=30 (Design A, N=21	 Group 1: 23 (77%) 		cases and is only available
		were amputees due to:	and Design B, N=9 from 1999 to	 Group 2: 0 (0%) 		in German).
		 Trauma from RTAs 	2008)	 Absolute risk 		

Page 36 of 59

Bazian LtdRegistered office: 25 St James's Street, London, SW1A 1HGCompany Registered in England and Wales No: 3724527. VAT Registration No. 340 4368 76.

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		 (N=51) Tumour (N=7) Infected total knee arthroscopy (N=3) 4th degree burn (N=1) Other (N=7) They were assessed to be emotionally and intellectually able to undergo rehabilitation and 	Group 2: N=39 (Design C from 2009 to 2013) Design A: endomodule, bridging connector and bracket. Design B: structured surface of distal section of endomodule was removed as it was abrasive to skin	reduction of Design C for early soft tissue infection before 6 months ARR 42% (95% confidence interval [CI] 25 to 59, p<0.001) • ARR for late soft tissue infection for Design C 55%		Further studies reporting similar results for these patients are: Aschoff 2014 ²⁷ (Abstract only published, 71 implantations over 1999 to 2013, with 7 fractures). Aschoff 2014 ²⁸ (Abstract only published, "overall
		lifelong stoma wound care and hygiene.	and soft tissue rather than encouraging skin to attach to the device. Bridging connector was	(95% CI 35 to 82, p<0.001)		patient's satisfaction with their prosthesis is high". "Vital to the success of
		 Exclusion criteria: Dysvascular and atrophic bone conditions Immunosuppression Chemotherapy Diabetes Atherosclerotic 	slimmer and bracket smaller. Design C: no bracket, bridging connector shortened, coating with non-abrasive titanium niobium oxynitride ceramic. Thinning of subcutaneous fat to 2cm so that there was a reduced length of skin	Removal due to failure to osseointegrate: • Group 1: 4 (13%), 2 reimplanted • Group 2: 0 (0%) Fractures: • Group 1: 3 (10%)		this new technique is a close relationship and cooperation between surgeon, company, prosthetist, rehab facilities, GP, security system and patient for life.")
		peripheral vascular	in contact with the bone capping	4,5 and 6 months		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		 disease Skeletal immaturity Poor bone quality (bone damaged by radiation therapy, metabolic bone disease, renal insufficiency and/or dialysis) People satisfied with conventional socket prosthesis 	 portion of the implant to reduce infection risk. Larger channel made in second operation as a tight seal caused retained haematoma and serous fluids in Group 1 which could lead to failure. A 3mm gap gave good drainage. Post-op care: Twice daily cleaning with mild soap and water Partial weight-bearing after surgery Full weight-bearing after 4 to 6 weeks without crutches 	after implantation Group 2: 2 (5%) 31 and 34 months after implantation, fixed with screws Implant structure failure: Group 1: 1 (3%) at 7 years Group 2: 0 (0%) Any unplanned surgical intervention: Group 1: 24 (80%) Group 2: 5 (12.8%), (included 1 to remove excess granulation tissue, 1		Group 2 have had less time for complications to occur. Very little data on efficacy outcomes.
				prolonged process		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
					Conclusions	
				of lengthening		
				residual femur		
				which ended up		
				with a fistula over		
				the greater		
				trochanter which		
				continues to		
				secrete and a		
				dressing is		
				changed twice		
				per day (patient		
				can walk with a		
				stick) and 1		
				revision due to non-		
				osseointegration		
				after a different		
				surgeon		
				performed the		
				original op).		
				originar op).		
				1 case of		
				intramedullary		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				infection in Group 1. Patient had osteosarcoma and skeletal immaturity. Osseointegration was inadequate, leading to movement of the rod and infection.		
Al Muderis 2015 ³³	Australia	46 transfemoral amputees	OPL or Endo-Exo Femur	2 year follow-up	"Complications	No further details
	The		Prosthesis		related to the	supplied. Abstract only
Prospective case	Netherlands	3 had bilateral implants		Safety	osseointegrated leg-	published.
series				Soft tissue infection	prosthesis do occur	
	(Australia	Average age at amputation		(cellulitis):	but the suffering	No efficacy details
Australia 2011 to	N=22,	or implantation: NR		 22 required oral 	and disabilities are	provided. Covers the Van
2013	The			antibiotics (7	relatively mild.	de Meent 2013 ¹⁵
	Netherlands	Inclusion and exclusion		Australia, 15 The	Infectious events are	Netherlands study - giving
The Netherlands	N=24)	criteria: NR		Netherlands)	superficial and can	an extra year of follow-
2009 to 2011				• 13 required	be managed with	up, and some cases from
				surgical	intensive local	the Khemka 2015 ^{34, 35}
Single centre				intervention (5	irrigation and	Australia case studies.
University hospital				Australia, 8 The	antibiotics. Strict	
in each country				Netherlands)	patient selection	
				Osteitis:	and adherence to	

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
					CONCIUSIONS	
				• 1 (The	exclusion criteria,	
				• I (The Netherlands)	may reduce	
				Implant failure/	complication rate."	
				Osteomyelitis:	complication rate.	
				 1 (Australia) 		
Brånemark 2014 ⁸	Sweden	51 transfemoral amputees	Osseointegrated Prostheses for	2 year follow up	"The high	6 people did not complete
			the Rehabilitation of Amputees	- J	cumulative survival	the questionnaires as they
Prospective case	(Amputees	6 bilateral (4 had the	(OPRA)	Efficacy	rate at two years	withdrew from the study -
series of	from UK	procedure on both sides in		92% of the implants	(92%) combined with	3 due to implant removal,
consecutive cases	(N=1),	this study, 1 had already had	Two-stage procedure - first	survived to 24 months.	enhanced	1 death, 1 lost to follow-
	Sweden	an OPRA fitted and 1 had too	operation to insert fixture into the		prosthetic use and	up and 1 due to injury of
1999 to 2007	(N=25),	small a stump), 45 unilateral	bone, then closing the skin. After	Questionnaire for	mobility, fewer	the other leg.
	Norway		6 months, second operation which	Persons with a	problems and	
Single centre	(N=14), Spain	Average age at amputation:	divides the muscles, sutures them	Transfemoral	improved quality of	Limitations:
	(N=11))	32 years (range 13 to 64	to the periosteum leaving 5mm	Amputation (Q-TFA):	life, supports the	Small study size
		years)	bare bone covered by part of a	 Mean prosthetic 	'revolutionary	Single centre
			skin flap which has had	use score	change' that	Non-randomised
		Average age at implantation:	subcutaneous fat removed.	increased from 47	patients with TFA	
		44 years (range 20 to 65	Abutment is fitted to the fixture.	to 79 (0 to 100),	have reported	Further detail on 39 of
		years)		p<0.001	following treatment	the 45 unilateral
				 Mean prosthetic 	with	amputees from this study
				mobility score	osseointegrated	is provided by Hagberg
		Amputations due to:		increased from 52	percutaneous	2014 ¹⁷ .

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		 trauma (N=33) 		to 70, p<0.001	prostheses."	
		• tumour (N=12)		Mean problem		
		• other (N=6)		score reduced		
				from 44 to 17,		
		42 used socket-suspended		p<0.001		Previous publications
		prostheses.		 Mean global score 		reported on smaller
				increased from 38		numbers of the OPRA
		8 were unable to obtain		to 77, p<0.001		study such as the first 18
		comfortable prostheses and 1				patients in Hagberg 2008 ¹⁸
		had too small a stump.		Short-Form (SF)-36:		and 100 patients including
				 Physical function 		the 51 in Hagberg 2009 ⁹
		Exclusion criteria:		improved from 35		but going back to 1990. In
		• Age <20 or >70		to 58, p<0.001		2009, 9/14 people were
		 Severe peripheral 		 Role-physical 		still using an implant that
		vascular disease		improved from 41		had been inserted in
		 Diabetes 		to 63, p<0.001		1990-1994, though 6 had
		 Skin disease affecting 		 Other parameters 		been reimplanted.
		amputation		did not change		25
		Systemic		significantly		Tillander 2010 ²⁵ included
		corticosteroids				33 of them in a study on
		Chemotherapy		Other outcomes		infectious complications
		Pregnancy		 40/45 had daily 		which are reported here.
		 Skeletal immaturity 		prosthetic use		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		 Likely inability to comply with treatment and follow-up No current problems with prosthesis 		 compared with 29/51 before 1 no use due to pain, 4 less than daily use Overall situation improved for 31/45 (69%) of people, stayed the same for 11/45 (24%) and got worse for 3 (7%) 		Nebergall 2012 ²² analysed bone changes and implant stability.
				Safety Death: • 1 unrelated to the implant Superficial infection: • 41 times in 28 people (infection rate 54.9%) treated with		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				antibiotics - 4 in		
				hospital.		
				Deep infection:		
				• 1 led to loosening		
				and removal		
				 1 treated with oral antibiotic 		
				 2 had positive 		
				cultures at		
				surgery with no		
				signs of infection.		
				Treated with		
				antibiotics for 6		
				months		
				Removal of implant:		
				• 1 due to infection		
				• 3 due to aseptic		
				loosening which		
				caused pain on		
				weight-bearing		
				Pain:		
				Almost constant		
				for 1 person by 2		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				years post-op		
				which showed		
				loosening 4		
				months later		
				 5 had episodic 		
				pain during		
				rehabilitation		
				5 fractures in 4 people:		
				 3 ipsilateral hip 		
				 1 below elbow 		
				 1 vertebral 		
				compression		
				Mechanical		
				complications of		
				abutment:		
				 9 fractures or 		
				bending of the		
				abutment or		
				screw (6 occurred		
				in 1 person). All		
				were fixed.		
Hagberg 2009 ⁹	Sweden	100 transfemoral amputees	OPRA	Up to 17.5 years	"A rapid increase in	Includes 51 people from
		(61 males)		follow up	implant loading can	the OPRA study.

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
			Two stage surgery - first stage		lead to implant	
Retrospective case		6 had bilateral implants (all	implantation, second stage 6	Efficacy	looseningpain	
series		cases of trauma)	months later to attach the	68 people with 74	during rehabilitation	
			abutment and perform soft tissue	implants were using	can indicate	
1990 and 2008		Average age at amputation:	surgery followed by	osseointegrated	overload and should	
		32±13.9 years (range 10 to 63	immobilisation for 10 to 12 days.	prostheses (all 6 with	be avoided."	
		years)		bilateral implants were		
			OPRA rehabilitation protocol	using them).		
		Average age at implantation:	instituted in 1999.			
		NR		Safety:		
			Rehabilitation regimes:	Reason 32 not using:		
		Years since amputation when	 Normal speed protocol - 	4 deceased		
		implanted 11.5±11 years	about 12 months from first	 7 due for second 		
		(range 0 to 44 years)	surgery	surgery		
			 Half speed protocol - about 	 6 initial training 		
		Reason for amputation:	18 months from first surgery	 1 osteomyelitis 		
		 Trauma (N=67) 		 2 severe phantom 		
		• Tumour (N=21)		limb pain		
		 Infection (N=7) 		 1 contralateral 		
		 Vascular including 		limb pain		
		embolus (N=3)		 20 implants 		
		 Diabetes (N=2) 		removed:		
		74 people used a socket		- 13 retreated, of		

Study	Country	Participants	Intervention	Outcomes	Author's	Comments/ limitations
					conclusions	
		prosthesis on at least 1 day a		which 9 were		
		week		successful		
				 11 implants 		
		Exclusions:		permanently		
		Severe vascular disease		removed		
		Ongoing chemotherapy				
		Immunosuppressive				
		medications				
		Growing children				
11	Courselant.	Adults over 70	0004	0	"D	
Haggstrom 2013 ²¹	Sweden	50 people with unilateral	OPRA	Cost	"Despite	Costs associated with
Retrospective cost		transfemoral amputation	Prosthetic costs from attendance	Total prosthetic mean cost/year:	significantly fewer	initial surgery were not included in this analysis.
		Workshop attendance (N=20	at a prosthetic workshop from	• €3,672±2259	visits for prosthetic service the annual	No clinic appointments
analysis		osseointegrated prostheses,	1993 to 2008. "Prostheses" was all	Socket prostheses	mean costs for	were included or other
1993 to 2008		N=36 socket-suspended	external elements. Includes:	• €3149±1682	osseointegrated	health-related costs.
1770 10 2000		prostheses, N=6 with both)	Salaries	osseointegrated	prostheses were	neurin related costs.
Single centre visits		p	New prostheses	prostheses	comparable with	The 2 groups were not
and survey		Inclusion criteria:	Services		socket-suspended	matched.
questionnaire		All prosthetic service	Repairs	Mean number of	prostheses. This	
		performed exclusively	Adjustments	visits/year to a	study suggests it is	Costs are estimated for 1
		at this workshop during	Maintenance	workshop:	due to more	Swedish clinic in Euros
		the time period.		• 7.2±4.2 socket	advanced prosthetic	based at 2009 prices. This

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				prostheses	components being	may be very different to
		Exclusion criteria,		• 3.1±1.5	used with	UK prices in 2016.
		amputation due to:		osseointegrated	osseointegrated	
		 Diabetes 		prostheses	prostheses."	
		 Atherosclerosis 				
				Average cost to		
				manufacture a new		
				prostheses in 2009:		
				• €4,890±1758		
				Socket prostheses		
				● €9370±6441		
				osseointegrated		
				prostheses		
Khemka 2015 ³⁴	Australia	16 transfemoral amputees	Osseointegrated Prosthetic Limb (OPL)	2 year follow up	"The average results demonstrated an	Abstract only published.
Prospective case		Average age at amputation:		Efficacy	improvement in	Safety data was published
series		NR	The Q-TFA was completed 1 year	Q-TFA	each domain,	for 2 years post-op by Al-
			before surgery and between 6.5	 Mean prosthetic 	particularly in the	Muderis 2015 ³³ .
2011 to 2014		Average age at implantation:	and 24 months after Stage 1	use score	reduction of	
		51±12 years	surgery for osseointegration.	increased from 63	problems and an	
Single centre				to 91 (56%	increase in global	
		Cause of amputation:		reported an	state."	
		 Trauma (N=11) 		improvement)		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		 Congenital (N=5) 		Mean prosthetic	"These results were	
				mobility score	comparable to	
		12 used a prosthesis and 4		increased from 64	previous studies	
		were wheelchair-bound		to 82 (75% reported an	relying of screwed fixation confirming	
				improvement)	that press-fit	
				Mean problem	implantation is a	
				score reduced	viable alternative	
				from 40 to 8 (94%	for bone-anchored	
				reported an	prostheses."	
				improvement)		
				 Mean global score 		
				increased from 47		
				to 79 (69%		
				reported an		
				improvement)		
Khemka 2015 ³⁵	Australia	101 people with lower leg	Osseointegrated Prosthetic Limb	Follow-up period NR	"This study shows	Abstract only published.
		amputation	(OPL)		favourable results	
Prospective case				Efficacy	for OPL treatment	Single surgeon and
series		7 bilateral implants	Above and below knee	Health Related Quality	for above knee as	centre, unclear how great
			interventions, N=NR	of Life questionnaires	well as below knee	an impact this has on
Single centre		Average age at amputation:		(Q-TFA and SF 36):	amputees,	results.
Single surgeon		33 (range 3 to 76 years)		 "Improved 	compared to Socket	

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				dramatically"	prosthesis. Our	Figures inaccurate.
		Average age at implantation			experience of over	Reporting of actual
		44.3 (range 17 to 76 years)		K scores:	100 patients has	results very poor.
				 "significant 	revealed	
		Cause of amputation:		improvement"	encouraging results	
		 Trauma (N=77) 		p=0.0006	with a major	
		 Infection (N=12) 			improvement in	
		• Tumour (N=10)		Time Up and Go and	patient's	
				6MWT test:	functionality and	
		30% wheelchair-bound		 "significant 	quality of life, and a	
				improvement"	low rate of	
				p=0.0149	complications."	
				Energy expenditure:		
				 Increased 4-fold 		
				Safety		
				"Low rate of		
				complications"		
Nebergall 2012 ²²	Sweden	51 transfemoral amputees	OPRA	Up to 10 year follow	"The RSA analysis	Same case series as
-				up	for the OPRA system	reported by Brånemark
Prospective case		6 bilateral (4 had the	Long-term fixation and stability of		indicates stable	2014 ⁸ .
series		procedure on both sides)	the osseointegrated implant using	Safety	fixation of the	

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
1999 to 2007		Average age at amputation: NR	radiostereometric analysis (RSA) and periprosthetic bone remodelling on plain X-rays, both	Median migration of the implant at 5 years: • -0.02mm distally	implant bone remodelling showed similarities with	Small number of implants analysed at 5 years.
Single centre		Average age at implantation: 45 years (range 21 to 65	performed at 6 months, 1,2,5,7 and 10 years after surgery.	Rotational movement of the implant at 5	changes seen around uncemented hip stems."	
		years)	15 implants were analysed at 5 years, 3 implants at 10 years (due to the small number these were	years: • 0.42° around the longitudinal axis		
			not reported).	Cancellization of the cortex:		
				 In at least 1 zone in over half of patients by 1 year 		
				 Affected many cases in year 2 Reduced by year 5 		
				Cortical thinning: • Zones 1 to 12, but		
				mainly in the distal zones at the 5-year follow-		

Study	Country	Participants	Intervention	Outcomes	Author's	Comments/ limitations
					conclusions	
				up.		
Sullivan 2003 ¹⁴	UK	11 transfemoral amputees	OPRA	6 year follow up	Quality of life	Small study, limited
			Two stage procedure. Implant and		improved for the	length of follow-up. No
Retrospective case		(from 56 potential	then abutment 6 months later.	Efficacy	participants who	details on outcomes for
series of all		candidates)		9 using the	completed the	the 2 people who had the
recipients			Rehabilitation:	osseointegrated	program. There	implant removed.
		Average age at amputation:	Six weeks afterwards a small	prosthesis daily - 1 for	were some concerns	
1997 to 2003		NR	training prosthesis is attached.	5.5 years. 5 had the	about infection,	
			Two to 3 months of training are	abutment replaced	abutment damage	
Single centre at		Average age at implantation:	required before full body weight	after falls.	and length of	
Queen Mary's		NR	can be put onto prosthesis. Then 3		rehabilitation.	
Hospital			months of using 2 crutches.	Quality of life:		
Roehampton		Inclusion criteria:		 Negative aspects: 		
		 Unable to use socket 	18 months from the first surgical	 Longer rehab 		
		technique	procedure.	than expected		
		 Full skeletal maturity 		 High number of 		
		 Less than 100kg 		visits for rehab		
				 Slowness of 		
		Exclusion criteria:		rehab program		
		 70 years old and over 		 Positive aspects: 		
		 Osteoporosis 		 Improved 		
		 Hip limitations 		proprioception		
		(osteoarthritis, flexion		 Ability to walk 		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		 contractures) Social and psychological factors Medical conditions that would add risk to the procedure Reluctance to comply with protocol 		further and do more No longer felt disabled, were able to participate with full daily living and activities such as cycling. Safety 2 had implant removal		
				due to infection after 1 year.		
Van de Meent 2014 ¹⁵	The Netherlands	22 transfemoral amputees (18 males)	Endo-Exo Femur Prosthesis Two step surgery.	1 year follow up Efficacy	"Osseointegration is a suitable intervention for	Limited data on safety and adverse effects as only 1 year follow-up.
Prospective case series		1 bilateral amputee.	First step, residual femur shortened to 20cm above	Q-TFA: • Global score	individuals with transfemoral	2 year follow-up safety
2009 and 2011		Mean age 46.5 (range 23 to 67 years)	contralateral knee joint space. Second operation after 6 weeks.	increased from 39 to 63	amputation because of trauma or tumour, who have	data reported by Al Muderis 2015 ³³ .
Single centre		Average time since	Rehabilitation:	Prosthesis use:	reduced prosthesis	

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		amputation 16.4 years (range	Two weeks after second operation	 Increased from 56 	use as a result of	
		2 to 45 years)	weight-bearing exercises began	to 101	socket-related	
		Cause of amputation:	using a short pylon, with up to 50% of weight. Full weight-bearing in	hours/week	residual limb/skin problems. OIP	
		• Trauma N=20	second week. Full length	6 minute walk test	[Endo-Exo Femur	
		• Tumour N=2	prosthesis attached in week 4,	(6MWT):	Prosthesis]	
			with full weight bearing over the	 Increased from 	significantly	
		Inclusion criteria:	next 2 weeks.	321m to 423m	increased walking	
		 Significant socket 			ability and	
		related problems	Average rehab program was 6 to 8	Timed Up & Go test	prosthesis-related	
		affecting quality of life	weeks.	(TUG):	quality of life.	
				 Improved from 		
		Exclusion criteria:		15.1 seconds to		
		• Femur <8cm		8.1 seconds		
		Amputations due to				
		diabetes or vascular		Oxygen consumption:		
		disease Severe cognitive 		 Reduced from 1330mL/min to 		
		disorders		1093mL/min		
		 Severe psychiatric 				
		disorders		Safety		
				8 mild soft tissue		
				infections treated with		

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				intensive cleaning with		
				hydrogen peroxide and		
				sometimes antibiotics.		
				No deep tissue		
				infections or		
				osteomyelitis or		
				implant failures.		
Frossard 2010 ²⁴	Unclear -	12 people with	Osseointegrated implant not	1 year or more post	"All combined, the	Study biased towards
	Australia/Sw	osseointegrated implant	further specified	ор	results indicated	recruitment of people
Case series with	eden				that the fitting of an	with successful implants.
control groups		Unilateral transfemoral	Gait analysis compared to data	Efficacy	osseointegrated	
		amputation and	sets from the literature for 142	Cadence:	fixation has enabled	Not a case control study
		osseointegrated fixation for	people with transfemoral	 46 strides 	this group of	as there was no attempt
		at least 1 year and able to	amputation fitted with a socket,	/minute, 2%	amputees to restore	to get a matched control
		walk unaided at least 200m.	and 258 able-bodied participants.	faster than socket	their locomotion	group in terms of
				and 11% slower	with a highly	demographics, conditions
		9 men, 3 women		than able-bodied.	functional level.	or level of disability.
					Further longitudinal	"Controls" were able to
		Average age at amputation		Duration of gait cycle:	and cross-sectional	use their socket
		or implantation: NR		 1.29 seconds, 3% 	studies would be	prosthesis whereas this
				shorter than	required to confirm	was the reason people
		Inclusion and exclusion		socket and 9%	these outcomes.	had osseointegrated

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		criteria: NR		longer than able- bodied.		implants, or healthy people without limb loss.
				Swing phase of the gait		
				cycle was longer than		
				the support phase (43%		
				of the gait cycle was		
				for swing, and 57% for		
				support) compared to		
				socket (41% swing, 59%		
				support) and able-		
				bodied (38% swing, 62%		
10				support).		
Hagberg 2005 ¹⁹	Sweden and	20 people with	OPRA	2 years follow up or	Socket prostheses	Selection bias.
	UK	osseointegrated implant		more	reduce hip range of	
Case series with a			Measurement of hip range of		movement and can	Not a case control study
control group		Implant for at least 2 years	motion with and without	Efficacy	cause discomfort	as there was no attempt
		and able to walk for at least	prosthesis using a goniometer and	Hip range of motion:	when sitting.	to get a matched control
Surgery performed		100m (N=20).	self-reported discomfort when	No restriction for	Osseointegrated	group in terms of
before 1999			sitting.	osseointegrated	prostheses do not	demographics, conditions
		Socket prosthesis users in		prosthesis group	restrict hip range of	or level of disability.
Multiple centres		Sweden (N=43).		(none had less	movement and are	"Controls" were able to
				than 90° hip	less likely to cause	use their socket

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		Average age at amputation or implantation: NR		flexion) Reduced in all directions with 	discomfort when sitting.	prosthesis whereas this was the reason people had osseointegrated
		Exclusion: Vascular amputees		socket prosthesis (37% had less than 90° hip flexion)		implants.
				Sitting discomfort:		
				 5% of the osseointegrated group compared 		
				to 44% of the socket group		
Häggstrom 2013 ²⁰	Sweden	34 transfemoral amputees	OPRA	2 year follow-up	Improved detection of high frequency	Performed sitting down because participants were
Case series with		17 assessed before and 2	Vibrotactile evaluation using a	Efficacy	vibrations may lead	not able to stand still and
control group		years after osseointegration	vibrator pin on the soul of the	Vibrotactile	to advantages in gait	do the test which lasted
		implant.	prosthetic foot and intact foot	 Detection 	control.	longer than 30 minutes.
1998 to 2007			using different frequencies.	threshold		Ten of the
		Average age at amputation		improved by 10		osseointegrated group had
		or implantation: NR		Decibels (Db) for		the same knee
				high frequencies		components of their
		Cause of amputation:		of 125Hz and		prostheses in the follow-

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
		• Trauma (N=11)		250Hz (from		up tests.
		• Tumour (N=6)		110Db to 100Db		
				for 125Hz and		Not a case control study
		17 'controls' with socket		from 122Db to		as there was no attempt
		prostheses evaluated once.		111Db for 250Hz).		to get a matched control
				 There was no 		group in terms of
		Exclusion:		change for lower		demographics, conditions
		 Amputations due to 		frequencies of		or level of disability.
		diabetes		8Hz, 16Hz, 32Hz		"Controls" were able to
		 Arteriosclerosis 		and 64Hz.		use their socket
				• These results		prosthesis whereas this
				were better than		was the reason people
				for the control		had osseointegrated
				group.		implants.
Tranberg 2011 ²³	Sweden	19 transfemoral amputees	OPRA	2 year follow up	Osseointegration	No results were provided
					provides significant	for the healthy
Case series with a		Gait analysis before and 2	3-dimensional gait analysis	Efficacy	changes in	"controls". Small sample
control group		years after osseointegration		Hip extension:	kinematic pattern	size. Though the results
		(N=19) compared to healthy		 Increased by 7.3° 	and even though	were statistically
1998 to 2007		controls (N=57).		from -2.6° (range	they were	significant, it is not clear
				-13.4° to 10.7°)	moderate, they may	if they were clinically
Single centre		Average age at amputation		to -9.9° (range -29	in the long-term	significant.
		or implantation: NR		.4° to 5°),	have a positive	

Study	Country	Participants	Intervention	Outcomes	Author's conclusions	Comments/ limitations
				p=0.007.	influence on the	Not a case control study
		Inclusion and exclusion criteria: NR		 This was an improvement towards the healthy controls (data not provided). 	lower back.	as there was no attempt to get a matched control group in terms of demographics, conditions or level of disability. "Controls" were adults without limb loss.
				Pelvic tilt: • Anterior pelvic tilt reduced by 4° from 21.7° (range 11.9° to 34.8°) to 17.7° (range 5.5° to 25.7°), p=0.016.		
				 This was an improvement towards the healthy controls (data not provided). 		